Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
courses:cs211:winter2011:journals:wendy:chapter4 [2011/02/16 02:08] – [Section 2: sCHEDULING TO MINIMIZE LATENESS: AN exchange argument] shangw | courses:cs211:winter2011:journals:wendy:chapter4 [2011/03/02 04:59] (current) – shangw | ||
---|---|---|---|
Line 26: | Line 26: | ||
===== Section 4: Shortest Paths in a Graph ===== | ===== Section 4: Shortest Paths in a Graph ===== | ||
+ | |||
+ | This section introduces the third example of greedy algorithm: finding the shortest paths. | ||
+ | |||
+ | The problem is just as what its name describes, given a directed graph, assigned a node s, how to find the path from s to every other node that is the " | ||
+ | |||
+ | After the discussing the theory aspects of the Dijkstra algorithm, the section further talks about the best way to implement the algorithm, using priority queue. Indeed, in class, I felt that we do not need all operations from PQ-the insert part will be linear even just treating it as a list. For each iteration, we need to add an node v to the set S, to select the right v-based on d(v)-the ExtractMin is used; to update d(v) for all nodes involved in the iteration, we use changeKey. ExtractMin is used at most n time and each time it takes o(logn); ChangeKey is used at most for all edges, m , times and each time it also takes o(logn). Hence, overall, the running ime is o(mlogn). | ||
+ | |||
+ | The algorithm is greedy because every iteration it only picks the node that a shortest path between it and s is the smallest under all circumstance. It is very smart. | ||
+ | |||
+ | The readability is 8. | ||
+ | |||
+ | ===== Section 5: The Minimum Spanning Tree ===== | ||
+ | This section talks about how to obtain the minimum spanning tree from a connected graph through the 3 different greedy algorithms. | ||
+ | |||
+ | First the definition of minimum spanning trees is introduced: a spanning tree, that is an acyclic path connecting all the nodes, that has minimum weight. | ||
+ | There are three greedy algorithms to solve the problems, namely: | ||
+ | 1, The Kruskal' | ||
+ | 2, Prim's Algorithm that starts with a node and greedily grow outward using the analogy of Dijkstra' | ||
+ | 3, the Reverse-Delete Algorithm that deletes edges from an descending order if deleting the edge does not disconnect the graph. | ||
+ | |||
+ | Then the book continues to analyze the algorithms. Before getting into each algorithm, it first introduces two important properties (actually the second is introduced after the analysis of Kruskal and Prim's algorithm, just for simplicity, I group them together): | ||
+ | 1, the cut property: if all edges are of distinct values, the minimum-weighted edge that connecting two non-empty, disconnected subsets need to be in the minimum spanning trees. | ||
+ | 2, the cycle property: for a cycle, the maximum-weighted edge in the cycle is not in the minimum spanning tree. | ||
+ | |||
+ | Use the cut property we can prove Kruskal and Prim's algorithms easily, especially the Prim one, very straightforward. | ||
+ | Use both properties to prove the Reverse-Delete algorithm: when deleting an edge is possible, use circle property; when not, cut property. | ||
+ | In general, deleting is justified by Circle property, and inserting by Cut property, no matter what kind of greedy algorithm we used, which also explains the variety of greedy algorithms. | ||
+ | |||
+ | Before, we assume that all edges are of distinct values. The method to get rid of this assumption is the perturb the ties with very small value epsilon, that is, forcing an order, and then use those algorithms. | ||
+ | |||
+ | After analyzing the algorithm, naturally follow the implementations of those algorithms, except for the Reverse-delete algorithm when the running time is hard to reach O(mlogn). This section only introduces the implementation of the Prim's Algorithm through priority queue like in Dijkstra' | ||
+ | |||
+ | However, in practice, minimum spanning tree is not enough for a smoothly-run network. There are problems such as for individual pairs, the client may not be willing to have an edge that is heavy-weighted, | ||
+ | |||
+ | The readability is 7. | ||
+ | ===== Section 6: The Implementing Kruskal' | ||
+ | The main goal of this section is to introduce the Union-Find data structure, which will allow us to quickly find if two nodes are connected, which is exactly needed in the Kruskal' | ||
+ | |||
+ | There are three operations in the data structure, namely MakeUnionFind, | ||
+ | |||
+ | If we use an array to implement the Union-Find, we use the location of each element of the array to represent each node and fill in the number to represent the set the node belongs in. Therefore, we can easily see that the running time for Find is O(1), and MakeUnionFind(S) O(n). Any sequence of k Union operations takes at most O(klogk). Because at most 2k elements are involved in any Union at all and the process happens at most log2(2k) times. | ||
+ | |||
+ | There is actually a better data structure than arrays to implement Union-Find, especially for the Union operation. The key is using a pointer. MakeUnionFind(S) does similar things as above and has each set pointing to the element inside. When union two sets, we simply have the smaller set's pointer points at the larger set's pointer. Obviously, MakeUinonFind takes O(n) time and Union constant time. The Find(v) ultimately does is try to find what element is the set containing v points to. Since the set containing has at least 1 elements, at most n, and its size doubles most logn time, the running time is O(logn). | ||
+ | |||
+ | We can even further improve the algorithm to make Find(v) constant. However, setting up the data structure takes over more time, because we need to go though the pointing path for each element in the sets as we did in the Find above. | ||
+ | |||
+ | After looking into the data structure, it is not hard to implement Kruskal' | ||
+ | |||
+ | This section talks in details of the construction of Union-Find, interesting. The readability is 9. | ||
+ | |||
+ | ===== Section 7: Clustering ===== | ||
+ | This section talks about another problem-Clustering-and how to solve it with greedy algorithm. Clustering (of maximum spacing) can be precisely described as partitioning a collection of objects U such that the maximum possible spacing s achieved (That is, the minimum distance between any pair of points lying in different clusters is minimized). | ||
+ | |||
+ | The algorithm is exactly the Kruskal' | ||
+ | |||
+ | Practical applications can be finding out the clusters and using low-cost network within the cluster and using more robust network between each cluster. | ||
+ | |||
+ | This section is quite short but the application of the minimum spanning tree is interesting. | ||
+ | |||
+ | ===== Section 8: Huffman Code and Data Compression ===== | ||
+ | |||
+ | This section introduces us the Huffman Code and how to use greedy algorithm to achieve. | ||
+ | |||
+ | First, the book gradually introduces the origin of Huffman coding from using 1,0 bits representing letters, the different frequency of usage of letters in English, the Morse code which is similar but easier with the pausing, Prefix codes and the way to calculate the optimal prefix codes (minimize the sum of frequency*bit-length). | ||
+ | |||
+ | To begin design the algorithm, intuitively the Binary Tree comes to mind because if we only use the leaves to represent letters then it is gonna be prefix code since no parent is involved. It is not hard to see that the optimal prefix code corresponds with some full binary tree. Now we attempt to construct the algorithm to build such a full binary tree. The Top-Down Approach as in the S-F code is the first try, unfortunately the example used earlier is already a counter example. To perfectly modify this approach needs to borrow knowledge from dynamic programming, | ||
+ | |||
+ | Compression is not always as easy as the Huffman coding. Tow major challenges are the " | ||
+ | |||
+ | I like the structure of this section because it tends to " | ||
+ | |||
+ | Readability is 8. | ||
+ |